November 8, 2024 | 06:57 GMT +7

  • Click to copy
Saturday- 10:59, 11/02/2023

Reducing pesticide pollution and harvesting intensity can increase crop yield and help in climate change mitigation

(VAN) Researchers at the University of Turku in Finland have found that carbon sequestration and plant resilience as well as forage pasture yield can be increased through key adjustments in agricultural management.
Roots from study plants from herbicide-free soil representing intense mowing, with 5cm mowing height (left), less intense mowing with 15cm mowing height (middle) and no mowing (right). Roots are clearly smaller when the mowing intensity is higher. Photo: Kalle Rainio

Roots from study plants from herbicide-free soil representing intense mowing, with 5cm mowing height (left), less intense mowing with 15cm mowing height (middle) and no mowing (right). Roots are clearly smaller when the mowing intensity is higher. Photo: Kalle Rainio

The results provide a roadmap for reducing pesticide loads in soils and the first steps toward increasing climate change mitigation while improving crop yield in grasslands. The studies have been published in Scientific Reports and the Journal of Sustainable Agriculture and Environment.

Soil properties are an essential driver of plant quality, including resilience against climatic extremes and resistance against insect pests and pathogens.

The increasing food demand of the rising global population together with technological advancement and novel synthetic agrochemicals have resulted in agricultural intensification with the goal to maximize crop production.

"However, in recent decades, we have observed both a reduction in plant resilience and crop yields and the degradation of soil quality. This has resulted in an exponential need for chemical fertilizers and pesticides," says Docent Benjamin Fuchs from the Biodiversity Unit of the University of Turku, Finland.

"Only in recent years, we have started to realize that intensive agriculture and agrochemical pollution in fact contribute to a reversal of the intended purpose. Soils are polluted with pesticides and at the same time, extreme weather events erode soil nutrients," Dr. Fuchs continues.

Intensive harvesting and pesticide residues in soil limit root growth

One key challenge in the research was to find practical and sustainable ways to improve plant resilience and elevate crop yield while mitigating the carbon (CO2) emissions caused by human activity by enhancing carbon sequestration in the soil.

The researchers conducted two independent experiments at the University of Turku's research facilities at the Ruissalo Botanical Gardens in Turku, Finland. In the greenhouse and common garden studies, the research team showed that the intensity of mowing has a great impact on pastures. By reducing the intensity of the mowing and cutting the plant higher, the overall yield of the pasture increased and the plants developed bigger roots. This indicates a higher atmospheric carbon sequestration into belowground storage.

What was surprising, Fuchs emphasizes, is that the researchers found a detrimental effect of herbicide residues in soil on root growth regardless of the intensity of the yield harvest.

"This demonstrates a tremendous limitation to the potential carbon binding and storage belowground when soils are polluted by pesticide. Considering the vast amount of pesticides applied to agricultural fields yearly, we can conclude that the impact on soil quality is a major driver of limited root growth, carbon sequestration, and consequently plant resilience and productivity," Dr. Fuchs says.

The authors propose additional field studies to extrapolate their findings onto a field scale. Both studies conclude that climate change mitigation via optimizing carbon sequestration and storage in soil can be achieved by reducing pesticides, which will facilitate root growth and improve plant resilience.

All over the world, cultivated grasslands are used as grazing pasture as well as for growing fodder that is turned into hay and silage. They cover large parts of the world's agricultural land and have a tremendous potential for climate change mitigation through carbon storage. The plants use carbon dioxide as they grow, and some of this atmospheric carbon becomes bound in the soils.

"Consequently, understanding how pesticide pollution in soil and intensive management limit plant productivity is the key to optimizing intensive grassland-based agriculture in a sustainable and climate-friendly way," Fuchs concludes.

HD

(Phys)

Regenerative agriculture- restoring soils for a healthier lifestyle

Regenerative agriculture- restoring soils for a healthier lifestyle

(VAN) According to Regeneration International, regenerative agriculture describes farming and grazing practices that, among other benefits, reverse climate change by rebuilding soil organic matter and restoring degraded soil biodiversity...

Four ways Trump could impact the agriculture sector during second term

Four ways Trump could impact the agriculture sector during second term

(VAN) In a return to the White House, President-elect Donald Trump has vowed to overturn climate regulations and deregulate the agriculture industry.

Cop16: the world’s largest meeting to save nature has ended with no clear path ahead

Cop16: the world’s largest meeting to save nature has ended with no clear path ahead

(VAN) Progress at the UN’s biodiversity summit, Cop16, in Cali, Colombia, has been slow. Frustratingly so.

Meeting the new demands of the EUDR

Meeting the new demands of the EUDR

(VAN) Sophisticated automation enables users to send hundreds of data collection requests with a single click.

Small farmers in Europe struggle to get by

Small farmers in Europe struggle to get by

(VAN) Brutal economic situation has inflicted misery on farmers who struggle to turn a profit and forced some to look for alternative streams of revenue.

China intensifies emergency food supply amid increasing extreme weather events

China intensifies emergency food supply amid increasing extreme weather events

China has reinforced its emergency food supply in response to increasing extreme weather events and natural disasters, an official said.

Scientists dismayed as UK ministers clear way for gene editing of crops - but not animals

Scientists dismayed as UK ministers clear way for gene editing of crops - but not animals

(VAN) Advocates urge government to allow ‘precision breeding’ to combat disease, but RSPCA warns of ethical dangers.

Read more